SPIROGRAPHE

Quentin Huan

I Présentation du sujet

Dans ce sujet, nous allons creer un petit module permettant de dessiner des rosaces en Python avec Numpy et Matplotlib.

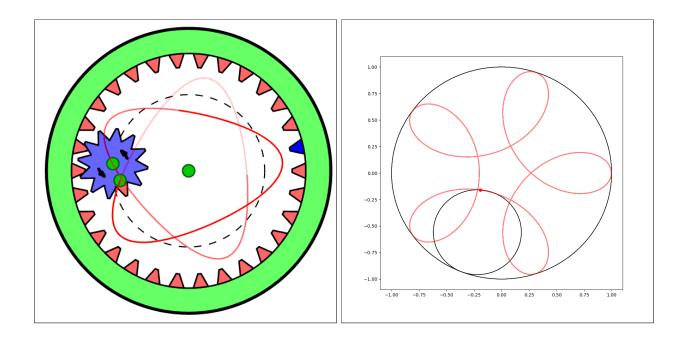


FIGURE 1 – principe de fonctionnement et exemple de rosace $(R_0 = 1, R_1 = 0.4, \omega_0 = 1, \omega_0 = 4)$

II Étapes:

A Cercle extérieur

i Équation paramétrique

On considère un point I placé sur le cercle extérieur $C_0(O_0, R_0)$: ce point se déplace sur le cercle à la vitesse angulaire ω_0 . Utilisez l'équation paramétrique d'un cercle $C(O_0, R_0)$ (1) pour tracer la trajectoire du point I au cours du temps.

$$\begin{cases} I_x = R_0 \cos(2\pi\omega_p \cdot t) \\ I_y = R_0 \sin(2\pi\omega_p \cdot t) \end{cases}$$
 (1)

(on peut aussi utiliser les nombres complexes : $I = R_0 \exp(2\pi\omega_p \cdot j \cdot t)$)

ii Animation

Utilisez le module d'animation de Matplotlib pour animer I (voir $ex_animation.py$ sur Sakai)

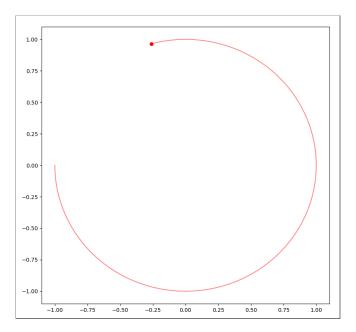


FIGURE 2 – trajectoire du point I

B Cercle intérieur

i Tracer la rosace

On considère un point P placé sur le cercle intérieur $C_1(O_1, R_1)$. Le cercle C_1 est en contact avec C_0 au point I et toune à la vitesse ω_1 .

Tracez la trajectoire du point P au cours du temps en fonction de (O_1, R_1, ω_1)

2 / 4 2022

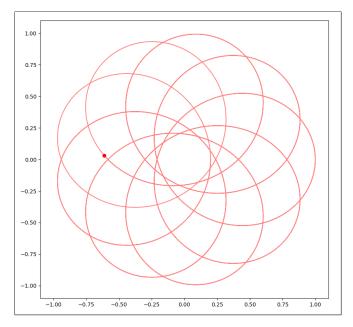


FIGURE 3 – trajectoire du point P

ii Animer les cercles

Utilisez le module d'animation de Matplotlib pour animer toute la situation. On veut voir apparaître :

- 1. les deux cercles C_0 et C_1
- 2. le point P
- 3. la trajectoire du point P

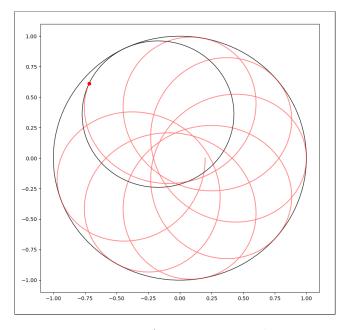


FIGURE 4 – Animation complète

3 / 4 2022

C Idées suplémentaires

- 1. exporter en png
- 2. ajouter un paramètre de décallage
- 3. utiliser d'autre formes pour le contour externe
- 4. gérer un cercle qui roule sur l'extérieur du contour
- 5. ajouter un troisième cercle qui roule dans le deuxième
- 6. ajouter N cercles

4 / 4 2022